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1 Principal Value and the Dirichlet Problem

1.1 Principal value
Definition 1.1. Let f(z) be meromorphic. The principal value of f is

PV/ f(z)dx = lim f(z)dz.
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Theorem 1.1. Let f(z) be meromorphic in U O {z : Im(z) > 0}, and assume that
lf(2)| < K/|z| as z — oco. f has poles ay,...,a, on R, all simple poles. Then the principal
value s

PV/ f(x)e da = 2i Z Res(e™ f(2),a) + mi Z Res(e™* f(2), a;)
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Proof. Create a contour with a rectangle in the upper half plane, which has little indents
to avoid the poles. Here, 7 is the bottom of the rectangle (with the little circular indents).
By the residue theorem,

/ = 27 Z Res(e™ f(2),a).
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and )fm‘ — 0 in the same way. Also,
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as M — oo.

7{ = / f(z)ei)‘zeie“ dt,
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where z = a; + ee™. Since
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we get the result. O

Example 1.1. Let 0 < 8 < 1. Then let’s solve
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We use a “keyhole contour,” consisting of a small circle around 0 connected to a large circle
of radius R. Let 1 be the contour along the real axis going from the small circle to the
large circle, let 72 be the large circle, let 3 be the reverse real axis contour, and let 4 be
the small circle. It’s important to notice that ~; and 3 don’t cancel because z = |z|e?218(2),
and arg(z) = 0 on 1, and arg(z) = 27 on 7,.
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So we get
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So we get that
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1.2 The Dirichlet problem

Let w be harmonic. Recall that
1. A domain Q is simply connected iff there exists some f € H(2) such that u = Re(f).

2. Mean value property:
1 2w )
B(20,R) CQ = u(z) = 2/ u(zo + Re') dt.
T Jo
3. u(z0) = supqu(z) = wu is constant on the domain .

The third property follows from the second by a connectedness argument.

Theorem 1.2. Let u € C(D), and U is real and harmonic on D. Then

u(z) ! /u(e’t)ludG
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1. For all z € D,

2. If f € C(OD) and z € D, then the function
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1s harmonic.

3. The function

is continuous on D if f € C(OD).
This solves the Dirichlet problem on ID. The function
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is called the Poisson kernel.

Corollary 1.1. If a function satisfies the mean value property for all 0 < r < R (for some
fized radius R), it is harmonic.

We will prove this next time.
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